
9/10/2008

1

Values, Variables, Types &

Arithmetic Expressions

Lecture 2

Object-Oriented Programming

Lecture 2 Object-Oriented Programming 2

Agenda

• Inside of a Computer

• Value

• Variable

• Data Types in Java

• Literals

• Identifiers

• Type conversions

• Manipulating Variables

• Constants

• Reserved Words

• Manipulating Values

• Expression

• Operator Precedence and Associativity

• Type Conversions

• Objects

• Readings

9/10/2008

2

Lecture 2 Object-Oriented Programming 3

Lecture 2 Object-Oriented Programming 4

Inside of a Computer

9/10/2008

3

Lecture 2 Object-Oriented Programming 5

Simplistic View of a Computer

Lecture 2 Object-Oriented Programming 6

Very Simplistic View of a Computer

CPU

Location 0

Location 1

Location 2

Location 3

Location 4

Location 5

Each location is

1 byte of memory

1 byte = 8 bits

Each bit is an electric

impulse carrying 1 or 0.

This simplistic view is enough to explain the basic concepts

of programming to students

9/10/2008

4

Lecture 2 Object-Oriented Programming 7

Value

• The only task a computer can do is arithmetic e.g.
multiplying, dividing, subtracting, etc.

• Therefore, everything in the computer is represented as a
value
– Numbers, letters, characters, etc are all represented as values

• Values could change depending on their nature. For
example
– the temperature today is different from the temperature yesterday

– The number of cars inside Lahore is different then the number of
cars Islamabad.

Lecture 2 Object-Oriented Programming 8

Variable

• To store a value inside a computer a

‘variable’ is used.

• A variable is a space in the memory to store

a value.

• This space is reserved until the variable is

required.

9/10/2008

5

Lecture 2 Object-Oriented Programming 9

What Makes a Variable

• Variable has three important characteristics:
– Type

• How much memory do a variable need.

– This information is determined by a type.

– Name
• How to differentiate a variable with another variable of the

same type.

– Name refers to the memory location assigned to this variable.

– Value
• What is the value?

– The actual value contained by a variable.

Lecture 2 Object-Oriented Programming 10

An Example of a Variable

int temperature = 35

Type of the variable is integer (written as “int” in Java)

A name of the variable

An initial value of the variable

9/10/2008

6

Lecture 2 Object-Oriented Programming 11

Example of a Variable

(Memory View)

00000000 Location 0

00000000 Location 1

00000000 Location 2

00100011 Location 3

Location 4

Location 5

int temperature = 35

Locations 0 – 3 are collectively

called as ‘temperature’

100011 is the binary equivalent of 35

Lecture 2 Object-Oriented Programming 12

Changing the Value of Variable

• Lets change the value of ‘temperature’.

temperature = 45902

00000000 Location 0

00000000 Location 1

10110011 Location 2

01001110 Location 3

Location 4

Location 5

Locations 0 – 3 are collectively

called as ‘temperature’

1011001101001110 is the binary equivalent of 45902

9/10/2008

7

Lecture 2 Object-Oriented Programming 13

Type of a Variable

• Among other advantages a ‘type’ binds the

memory to a variable name.

• The type int is of 4 bytes in Java.

• Therefore, it can hold maximum of

2,147,483,647 value.

• It can also hold values in negative down to

-2,147,483,648.

Lecture 2 Object-Oriented Programming 14

Variable for Real Numbers

• int cannot hold a real value.

• Therefore, a type “double” is used to hold real

values.

• Double takes 8 bytes of memory instead of 4 bytes

of a double.

• Out of the 8 bytes in a double 4 bytes are used to

hold the value before the decimal point and 4

bytes for the value after the decimal point.

9/10/2008

8

Lecture 2 Object-Oriented Programming 15

Relative Comparison of int and double

int numPeople = 2;

Reserves 32 bits (4 bytes)

and sets the value stored

in that space to 2. The name

‘numPeople’ is associated with

this space.

double bill = 32.45;

Reserves 64 bits (8 bytes)

and sets the value stored

in that space to 32.45. The name

‘bill’ is associated with

this space.

Lecture 2 Object-Oriented Programming 16

Other Types in Java

9/10/2008

9

Identifier

• Used to denote names of variables, methods

and classes.

• Sequence of characters (digits, letters, _, $)

• can’t start with a digit.

• Case sensitive

• Select legal identifiers.
• Sum_, 48my, $$_10, all/clear, get-lost, my48

Lecture 2 Object-Oriented Programming 17

Literals

• Integer literals
– 2000, 0, -7 (int)

– 3000, 3000L (long)

– Decimal numbers (8)

– Octal (020)

– Hexadecimal (0x90)

• Floating point literals
– 9.8f, 9.8F (float)

– 56.67, 56.67d (double)

Lecture 2 Object-Oriented Programming 18

9/10/2008

10

Literals (continued)

• Boolean literals
– true / false

• Character literals
– ‘A’, ‘\u0041’

• String literals
– “Hello”

Lecture 2 Object-Oriented Programming 19

Type Conversion

• Java can perform conversion automatically

• int value can be assigned to long.

• Depends upon type compatibility

• Not all type conversions implicitly allowed.

• Cant assign a long value to int.

• Solution

– Casting

Lecture 2 Object-Oriented Programming 20

9/10/2008

11

Type Conversion (cont.)

• Widening conversion

– Narrow data types are converted into broad data

type with out loss of information

• Both types are compatible.

– Numeric types are not compatible with Boolean and char

• Destination type is larger than source type.

– Example

• byte � int

• int � long

Lecture 2 Object-Oriented Programming 21

Type Conversion (cont.)
• Narrowing conversion

– Broader data type is converted into narrower

data type with loss of information

– Process is called casting (explicit type conversion)

– Target variable = (Target-type) Source variable
– byte b;

– int a=50;

– b=(byte)a;

– Truncation??????

– Type conversion in expressions

• (f*b) + (i/c) –(d*s) ?????????
Lecture 2 Object-Oriented Programming 22

9/10/2008

12

Lecture 2 Object-Oriented Programming 23

Manipulating Variables

• Assignment Statement

– In Mathematics the value x = x + 1 is not
possible why?

– In Java x = x +1 is possible because “=” is an
assignment operator and not an equality
operator.

– Assignment operator means that the contents of
the right hand side is transferred to the memory
location of the left hand side.

Lecture 2 Object-Oriented Programming 24

Assignment Statement

x = 5671

5671 is written at the memory location reserved for x

9/10/2008

13

Lecture 2 Object-Oriented Programming 25

Constants

• Constants are values which cannot be

modified e.g. the value of Pi

• To declare a constant in Java, we write a

keyword “final” before the variable type.

final double pi = 3.14;

Lecture 2 Object-Oriented Programming 26

Reserved Words

• Some names cannot be declared as variable names

because they are reserved words in Java

9/10/2008

14

Lecture 2 Object-Oriented Programming 27

Manipulating Values

• Mathematical Operators

– Common mathematical operators are available

in Java for manipulating values e.g. addition(+),

subtraction(-), multiplication(*), division(/),

and modulus (%).

• Java has many other operators also which

we will study in due course.

Lecture 2 Object-Oriented Programming 28

What is the Result of this

Expression?

• What is the result of this arithmetic

expression

6 + 2 * 3 / 6

a) 7

b) 0.5

c) 13.0

d) 4

9/10/2008

15

Lecture 2 Object-Oriented Programming 29

Arithmetic Expression Evaluation

• To evaluate an arithmetic expression two

concepts needs to be understood

– Operator Precedence

• Operator precedence controls the order in which

operations are performed

– Operator Associativity

• The associativity of an operator specifies the order

in which operations of the same precedence are

performed

Lecture 2 Object-Oriented Programming 30

Operator Precedence and

Associativity

• Operators Precedence and Associativity

for Java is following

1. *, /, % � Do all multiplications, divisions

and remainders from left to right.

2. +, - � Do additions and subtractions from

left to right.

9/10/2008

16

Lecture 2 Object-Oriented Programming 31

Evaluating an Expression

6 + 2 * 3 / 6

• Three operators are in this expression.

• However, * and / both have the same precedence and + has
lower precedence then these two.

• * and / will be evaluated first but both have the same
precedence level.

• Therefore, operator associativity will be used here to
determine the first to get evaluated i.e. left to right.

• The right most sub expression will be evaluated followed
by the next right one and so on.

Lecture 2 Object-Oriented Programming 32

Primitive Data Types

• So far the variable types that we have

studied are primitive data types.

• Primitive data types only have a memory

space for storing values.

• However, Object-Oriented Programming is

special because OOP has more variables

then just primitive data types.

9/10/2008

17

Lecture 2 Object-Oriented Programming 33

Objects

• Objects are one step ahead of primitive data

types.

• They contain values and operations both.

– e.g. A String object has a value as well as

operations that could be performed on that

value e.g. operations to find its size, operation

to compare its size with another String etc.

Lecture 2 Object-Oriented Programming 34

String Object

• In Java we could use string data type.

• A String in Java is declared as:

String city = “Lahore”;

Thought Question

Why the “S” in String is capitalized?

9/10/2008

18

Lecture 2 Object-Oriented Programming 35

Readings

Book Name: Object-oriented Programming in JavaTM
Textbook

Author: Richard L. Halterman

Content: Chapter 2 and 3

Lecture 2 Object-Oriented Programming 36

Acknowledgements

• While preparing this course I have greatly

benefited from the material developed by the

following people:

– Andy Van Dam (Brown University)

– Mark Sheldon (Wellesley College)

– Robert Sedgewick and Kevin Wayne (Princeton

University)

– Mark Guzdial and Barbara Ericsson (Georgia Tech)

– Richard Halterman (Southern Adventist University)

